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EFFECT OF ANOMALOUS DISPERSION DEPENDENCES O N  

S C A T T E R I N G  A N D  G E N E R A T I O N  O F  I N T E R N A L  W A V E S  

I. V. Sturova UDC 532.59 

The stable stratification of fluids, corresponding to an increasing density in the direction of  the gravity force, results 

in the existence of  internal waves. Low amplitude waves are described by the linear theory of internal waves, whose basis is 

described in detail, for example, in [1]. For a horizontally homogeneous fluid at rest there exists a countable number of free 

harmonic wave modes when a continuous density variation occurs only at a finite interval of depths. To each wave mode there 

corresponds a dispersion dependence of the wave frequency on the wave number, making it possible to determine the phase 

and group velocities of the given wave. The density distributions with normal dispersion characteristics are assumed to be those, 

for which each wave mode has a group velocity decreasing monotonically with increasing wave number. In the opposite case, 

when along the maximum value of the group velocity for given internal waves there occur local maxima with nonvanishing 

wave number values, the dispersion dependences are called anomalous. 

An investigation of the nature of density distributions, for which anomalous dispersion dependences are possible, was 

presented in [2]. It was shown, in particular, that anomalous dispersion dependences can be generated for those density 

distributions, in which there exists at least one waveguide portion with a buoyancy frequency being different from the maximum 

frequency, nonvanishing, and slowly varying over a wavelength of vertical standing eigenoscillations corresponding to it. An 

example of a fluid with anomalous dispersion properties can be a three-layered fluid with linearly stratified vortices and mid- 

layers with a homogeneous lower layer of infinite depth. 

It is assumed that the inviscid, incompressible liquid occupies the region - ~  < x < oo, - o o  < y < H (x is the 

horizontal, and y the vertical coordinate). In the unperturbed state the density distribution is 

pal l  - a l ( y -  tO l  < < (H2 y /0 
p(y) = tPl( l  + " lHl ) I I  -- a2(y -- H2) I (0 < y < /'/2) , 

[P2 = Pl( I + alH1)(l + a2H~) (Y < O) 

(H 1 and H 2 are the thicknesses of the upper and mid-layer, and H = H 1 + H2). For definiteness we put a 2 > r 1 > 0, i.e., 

the density gradient is 'maximum in the mid-layer. 

In the present study we investigate the scattering of an internal wave, incident on a solid horizontal elliptic cylinder, 

and determine the wave resistance when a uniform flow bypasses such a body. The cylinder axis is parallel to the front of the 

incident wave and perpendicular to the velocity of  the incident flow, so that the problems considered are two-dimensional. For 

simplicity it is assumed that the cylinder is totally immersed in the lowest layer, the flow in which being treated as a potential 

flow, and that the upper layer is bounded by a solid lid. The internal wave equations are described within the Boussinesq 

approximation. In both problems it is assumed that the body is sufficiently deeply immersed under the separation boundary 

between the mid- and lower layer. We compare the characteristics of wave motion in fluids with normal and anomalous 

dispersion properties. 

1. In the diffraction problem the equations of wave motion for the vertical velocity v(x, y, t) in the upper and mid- 

layers are 

O2Aul/Ot 2 + N~a2vt/Ox 2 = 0 (H  2 < y < ID,  

o2au~/o? + ~v~o2u21ox 2 = 0 (0 < y < tr 
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where the subscripts 1 and 2 refer, respectively, to the upper and mid-layers, N I ,  2 = X/~l,2 , g is the gravity force 

acceleration, and t is time. In the lower homogeneous layer the total velocity potential ~(x, y, t) satisfies the equation 

A T = 0 (y < 0). (1.1) 

The boundary conditions are the following: 

u~ = 0  ( Y =  ID, 
v~ = v 2, o v ~ / o y  = o v , / o y  (y  = H2), 

o, = ~ / O y ,  O 5 / O y  = 02~, /Oy ~ (y  = o ) ,  

0 v , / 0 y - ,  o (y --, -**). 

(1.2) 

It is known from the theory of linear internal waves [1] that in such a fluid the existence of free internal waves is 

possible only with co < N 2. The wave incident from the left can be an arbitrary internal mode with a vertical velocity 

a = R e W ( y ) e x p l i ( k x  - cot)I. 

The wave number k satisfies the dispersion relation 

Yl + k tg),tH~ 

�9 j , T & T , - - - - &  < 

IgvxH2 = )'2 ] fix + k t h f l l H  t (1.3) 

[/2tha,n ' _ ~, (~ > N,) 

(fit = k ~/1 - N~/oJ 2, Vz= = k ~/N~a/ofl  - 1). There exists a countable number of values kj (k I < k 2 < ...), satisfying 

the given dispersion relation. The eigenfunctions W(y, kj) of the wave modes are represented in the form 

[(ksinyzH z + },2cos},zl-12)A(k, y) (H~ < y < H) ,  

k . t ~ i n r ~  + ~,,cosrp, (0 < y < H, ) ,  
w(y, k) = V~ [v ,o"  (y < o) ,  

where 

Isin yt(H - y ) / s i n  YxHt (to < Nt), 
A(k,y) = [sh#,(~ y)/sh/3,n~ (,,, > JV O. 

The eigenfunctions are orthogonal: 

N~ f w(y, ~) wcy, k )dy + N1 f wo,  ~)w(y, k )ay = o,, ~ J). 
14 2 0 

The quantity cj can be considered to be an energy characteristic of the given internal mode. In what follows the wave scattering 

parameters are determined within this energy normalization. 

The potential of perturbed motion in the lower layer is represented as 

io = Re(~ o + ~)exp(~t ) .  

Here the incident wave potential ~0(x, y) is 

~o = CPo, ~~ = explk(y - ix)I, 

and the diffraction potential ff'(x, y) satisfies the nonleaking condition at the surface of the cylinder L 

# W / # n  = -ig~po/On (x, y E L) 
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(n = (n x, ny) is the internal normal to the surface of the body). The radiation conditions must be satisfied in the given field, 
implying that only waves outgoing from the body are formed during the scattering. 

The analysis of the given problem is conveniently performed by means of the Green's function (for more detail see 

[3]). The Green's  function in the lower layer G(x, y, ~, r/) is 

- 2/~ Pe~ (r§ cos k(x  - ~), (1.4) 
j - I  

G = In(rrl) + 2 pv ? e ~(x+~) cos k(x - ~)D(k)dk 

0 

where 

IT(k, Yl' Y2) (oJ < N1) , Tl(~'r )'2) 
o ( k )  = / r ( k  ' t / ~ ,  ~'2) (co > N~); r ( k ,  y, ,  )'2) = r2(~ ' Y,.Y2) ; 

TI(Yl' Y,) = )'2 tg Villi + Yl tg ~,2H2; 

T2(k' Y~' ~'2) ffi kT~(?~, V2) + Y20q - )q tg ),~H~ tg v~Ha); 

P{ = (Tl/T'2)l . .k . ;  
1 

r 2ffi (x- ~)2 + (y_ r/)2; r~ ffi (x- ~)2 + (y + r/)2; 

The symbol pv denotes an integral in the principal value sense, and the prime denotes differentiation with respect to k. 

From analyzing the behavior of G at I x l -" co it is seen that for continuous stratification each incident mode is 

scattered into an infinite number of modes. As a result, the solutions of the diffraction problem can be determined by forward 

(+) and backward (-) scattering matrices II Zjm• H, where for each element the row number j corresponds to the incident mode 

number, and the column number m -- to the number of the scattered internal wave: 
= 

Here 

a~ ffi -wv'(~, ~); 

v ' (~ ,  k) -- -Lf e"('~)[ a" + -" *- tn~)~ dL 
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The complex values Zjj + a n d  Zjj- are, respectively, the transmission and reflection coefficients of the j-th internal mode. 

Within the deeply immersed body approximation the diffraction potential is determined for an unbounded homogeneous 

fluid without account of stratification. In this case the nonleaking conditions are satisfied on the body contour, as well as the 

damping condition far from it. An application of this method to a two-layer fluid and a comparison of the approximate solution 

with the numerical solution of the total problem are presented in [3]. 

For an elliptic contour, given by the equation 

x~/a ~ + (y + h ) ' l b  2 = 1 

(a and b are the major and minor semiaxes, and h is the depth of the immersed center of the ellipse), expressions for V +- in 

the approximate solution are 

V+(k, k) = 4:x'f~ 
{,, + 

2~ckk 
v-ck, ~) - ~ + ~ ls',.Ckc)..toCk~) + soc.t,c)s,.(~c)1, 

where c = ~ a  2 - -  b 2, and Jn is the Bessel function of the first kind of order n. 

In the special case of a circular cylinder of radius b 

v§ ~)  = 4 ~ n v - ~ t ,  C2br v-ck, / , , )  - 0 
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TABLE 4 

J 
u/,v~. 

Case 1 Case 2 

0,557.3 0,6605 
0 , 0 3 8 8  O, i 7 8 2  

0,0195 0,0963 
0,0130 0,0655 
O.OO9"/ O,0499 

~/cci;- 
I 

Case 1 Case 2 

0,0078 0,0414 
0,0065 0,03(~ 
0,0056 0,0320 
0,0049 0,0277 
0,0043 0,0244 

(I 1 is the modified Bessel function of the first order). Note that waves scattered backward are always absent for a circular 

cylinder, placed in a fluid layer of infinite depth. 

Numerical calculations were carried out for H1/b = 1, H2/b = 20 for two cases of stratification: 1) N 1 = 0, 2) E = 

N1/N 2 = 0.25. The dispersion curves for the first four modes are presented in Fig. 1 by curves 1, 2. In case 1 the stratified 

fluid has only one waveguide layer with a constant value of a buoyancy frequency. In case 2 there exists a substantially thick 

upper layer with a substantial buoyancy frequency, nonvanishing and differing from the maximum value. The dispersion modes 

for the first mode are close in these cases, but for higher modes one observes in case 2 sharply expressed "bands" at co = N 1, 

whose appearance also gives rise to nonmonotonic behavior of the group velocities. 

For a circular cylinder with h/b = 1.5 the transmission coefficients for the first two modes, as well as the scattering 

coefficients of the first mode in the second [ Z12 + [ and, conversely, of  the second mode in the first [ Z2t + [ , are presented 

in Fig. 2. For an elliptic cylinder (a/b = 2, h/b = 1.5) the similar characteristics for the forward and backward scattering 

events are given in Fig. 3. Curves 1, 2 in Figs. 2, 3 show the results for the corresponding cases. It is seen that the 

transmission and reflection coefficients for the first mode are practically independent of N 1 , while the other characteristics in 

the region 0 < w / N  2 < 0.25 differ sharply for these two types of stratification. The coefficients ] Z12 + I , [ Z22 • I , 

I Z2t • [ , are substantially smaller in case 2 than in case 1. This is, obviously, explained by the fact that in case 2 there is 

substantial scattering in the higher modes. The scattering matrices are presented in Tables 1-3. Table 1 shows the values of 

103. ] Zjm + ] (j = 1,-'~, m = 1,1-'-'6) for the elliptic contour with co/N 2 = 0.2 for case 2. The underlined diagonal elements 

correspond to transmission and reflection coefficients for the corresponding modes. Table 2 provides the similar results for case 

1. The smaller size of this table is explained by the fact that in case 1 the scattering for the higher modes is insignificantly 

small. It is seen that for nonmonotonic variation of group velocities more intense scattering is possible in the higher modes. 

This is observed only for co < N 1. At higher frequencies the incident waves provide practically identical results in both cases. 

In Table 3 we show the analogous coefficients for r 2 = 0.4. When the frequency of the incident wave tends to the limiting 

value N 2 wave scattering ceases. 

Similarly one can also solve the diffraction problem of excitation of  internal waves for steady-state body oscillations: 

horizontal, vertical, and rotational. The Green's functions of these problems coincide. 
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2. For stationary uniform flow past an immersed body with velocity U in the direction of the negative x axis the 

equations of wave motion for the vertical velocity v(x, y) are 

Au~ + e~v2u~ = 0 ( H 2 < y < I-0, 

~x% + v2u2 = 0 (0 < y < H~), 

where p = N2/U. In the lower layer the velocity potential of the wave motion ,#(x, y) satisfies Eq. (1.1). The boundary 

conditions of  the stationary problem coincide with (1.2). According to the radiation condition, in the far field the wave motion 

can be substantial only behind the body. 
One of the fundamental difficulties of solving this problem is satisfaction of the exact continuity condition on the body 

surface 

o~o / On = Un (x, y e L). 

Most studies involved with the determination of internal wave characteristics were carried out by replacing the real finite body 

by a system of point singularities, similarly to the way this is done for a homogeneous unbounded body (see the review [4]). 

Application of  numerical methods makes it possible to solve the problem considered within the full statement of the problem 

and, in particular, to determine the wave load acting on the immersed body. An example of comparing numerical results with 

an approximate solution for the wave resistance of an elliptic cylinder in a two-layer unbounded fluid is presented in [5]. It 

has been shown that the dipole approximation provides a quite satisfactory upper bound estimate for the wave resistance. 

The Green's function of the given problem in the lower layer is, similarly to (1.4): 

G = In(rrl) + 2pvj 'e  ~ * ~ cos k(x - ~)S(k)dk 
0 

M 

j ~ l  

(2.1) 

Here 

I T(k ,  l, l, 72) (k < ev), 

s(~) = IT(t ,  t#~, ~'2) (~v < k <v), 
I T ( k ,  ~, ,  r (k > v); 

p, = ~/Id - N { / u  ~. 

The functions T and P1 coincide with the expressions given in (1.4), in which the replacement ~o = kU was performed. The 

same replacement must also be made in (1.3) to determine 1~. The integrand expression in (2.1) can have simple bands when 

k < u, whose number M increases with increasing u. We denote by urn0 q < u2 < "") the p values, for which roots k m are 
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created. The v m values are determined by solving the equation tg vmH2-tg evmH l = e. For a given v the value of M is found 

from the inequality v M < v < VM+ 1. 

Wave motion is generated behind the body only when U < U 1 = N2/v 1 and is the sum of M harmonic waves. The 

number of excited waves increases with decreasing velocity of flow past the body. 

The dipole approximation for the wave resistance R is discussed in [6], and for an elliptic cylinder in the three-layer 

fluid considered is M r -2k.h 
r 1 

R = p2d2E 
i ' l  Ql(k) ) + Q2(kj ) 

where 

Q~(k) = 
(k sin Y2H2 + Y2 c o s  ')/2/'/2) 2 

I sin 2)'2/'/2 
Q2(~)  = ~ ,  + ~- + - -  

2Y 2 

2ylH l -- sin 2y2H 2 

Yl sill 2)'IH 1 (k < ~"V),. 

sh ~lHl - ~lHl 
fll sh2fllHl (k > ev); 

21, k2 ( sill 2~,2H~] " 
Y2 sin2 y2H2 + -~)'2 [ H2 - ~ )' 

and d = ~rb(a + b)U is the dipole moment for the elliptic contour. 

Calculations were carried out for the fluid stratification cases considered in Section 1 and for the body geometry 

N22H2/g = 0.03. The critical velocity values of the first 10 modes are given in Table 4. It is seen that the difference between 

the two cases investigated becomes very large with increasing mode number. The behavior of the wave resistance is presented 

in Fig. 4, where curves 1, 2 show the corresponding cases of fluid stratification. Figure 4 shows the total result, while Figs. 

4b-d show the contributions of the first four modes. It is seen that despite the sharp differences between the critical velocities, 

the behavior of the total wave resistance does not differ very strongly in these two cases. The mode expansion of the wave 

resistance shows that the contributions of the first modes are practically equal due to the adjacency of their dispersion 

dependences, while the contributions of higher modes differ substantially. For normal dispersion dependences the wave 

resistance has one maximum for each wave mode, while for anomalous ones their number increases with mode number. It is 

interesting to note that the iocations of maximum appearances for anomalous dispersion dependences are near the velocity values 

where maxima are generated during normal behavior of the dispersion dependences. Thus, for F = U/V '~-=  0.035 in case 

I the wave resistance is determined by the second mode, while in case 2 it is determined by the total contribution of modes 

with j = 2,6, for F = 0.0175 in case 1 - -  by the third mode, and in case 2 - -  by the contribution of modes with j = 3,10. 

Figure 4 shows only the range of values 0.013 _< F _< 0.3, where there exist no more than 3 modes in case 1 and no more 

than 18 modes in case 2. 
Thus, it has been shown in this study that anomalous dispersion dependences can lead to a "leapfrog" of internal wave 

modes, when the excitation of  higher modes occurs more intensely than that of the lower modes. 
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